Random Access to the Time Domain in the AMPLE language

Chris Jordan
Hybrid Technology Ltd
Cambridge
Great Britain

ABSTRACT

AMPLE is a powerful and versatile music programming
language and environment for use on microcomputers.
The language ‘nucleus' includes a wide range of
computation and sound control functions for advanced
musical applications, linked to an innovative
textual music notation for more traditional musical
forms. Higher-level components of the environment
cater for specific user requirements such as
instrument design, real-time performance control and
staff notation, and low-level software interfaces
provide unified access to a variety of musical input
and output devices, both via MIDI and direct
host-specific connections. Currently, the most
popular use of AMPLE is in the Hybrid Music System
for the BBC Microcomputer, including the Music 5000
Synthesiser.

AMPLE is a procedural language with a 'word'
structure like that of LOGO - the user program is a
hierarchy of words, each defined in terms of
pre-existing user words and pre-defined system
words. Words can be created and edited
individually, interactively, and in a variety of
forms, always including the traditional textual .
program form.

The user program runs in real time under the control
of a time manager that merges and sorts events from
all concurrent processes before playing. This
allows random access to the time domain (over a
range limited by system load and memory capacity),
so that as well as the usual positive time intervals
between events, negative time intervals can be
accomodated. Thus, programs and scores are free to
generate event sequences in non-time orders that
better suit the algorithms of the program or score.
The major reward is simpler programming of a variety
of overlapping musical structures, both large and
small scale, both via low-level sound control words
and, in particular, AMPLE's textual music notation.

Simple applications of the random time access
facility are described, along with reYated features
of the AMPLE textual music notation.

NOTATION ELEMENTS

AMPLE music notation has words (symbols) for four
basic types of musical event:

word function

letters A-G & a-g notes of different pitches

X hit (pitchless note)
A rest
/ hold (continue last event)

Other words set the parameters of events, the most
important here being ',' (comma) which sets the
length in timebase units. In scoring, a basic
'beat’' length is set with ',', and multiples of this
are achieved by extension with the / word (hold).
For example:

envelope J\N\'\'\]__
stafr J J J‘ J‘ J }

AMPLE 12, X/ / / X/ 1/ X/ X/ X1t 27 107

On playing, X (hit) expands into a 'gate on' event
followed by a 'duration' (time interval). * (rest)
expands into a 'gate off' and duration, and / into
Jjust a duration. In each case, the length of the
duration is that set by the previous ',', in this
case 12 units.

Hence, this simple music event sequence translates
into a sound event sequence of just 'gate on' and
'‘gate off' events with separating time intervals.

The full set of AMPLE music words is described in
the Music 5000 User Guide {1986).

NEGATIVE LENGTHS

If a negative length setting is in force, the
duration of each music event moves the 'time
pointer' back rather than forward, so the next event
will play before rather than after. Hence, the
example could be re-scored backwards as follows:

=12,///7/* 117X /X/X ///X /17X
The sounding result is the same, but there is a net

backwards movement in time rather than a forwards
one, so subsequent music events will be displaced.

A-33 ICMC 86 Proceedings

BACK-HOLD

The back-hold word, \ , has the effect opposite to
that of the hold word, / . It has the effect of a
hold with the current length negated, so, for
example, the sequence

/77 \\\
has a zero net result.

One application is in the programming of the
'overhanging pick-up' musical structure - a short
sequence of notes that leads-in to a section of a
piece, for example a verse of a song. This can be a
problem because the pick-up is temporally part of
the previous section, but must be functionally
attached to its own section if this is to be
called-up as a procedure in different contexts.

The negative duration ability lets the pick-up be
included in its rightful functional place by
allowing back-spacing from the section start to the
pick-up start. Using back-holds, this is quite
clear, for example:

12, \\\ def G/// /fed c///

pickup section proper

The pickup is quite free to overlay events in the
tail end of the preceding section, generated by the
same or another process.

CHORDS

Round brackets are used to denote chords, in which
subsequent musical events of a group play alongside
the first on successive voices. The subsequent
events appear as a bracketed group after the first
{'main') event, for example:

tune: C C / D .
chord sequence: C{(EG) C(EA) /(F/) D(FA) *(**)

In this simple example, the C, E and G in the first
group play together as a C major chord. In the
third group, one voice starts a new note while
others are held, and the final chord of rests
silences all voices.

For various reasons not discussed here, it is
desirable to have a syntax like this in which
additional notes are added after an unchanged main
note. The availablity of negative lengths allows
this to be implemented by simple definitions of '(!'
and ')', with no need for program look-ahead or
retention of the last duration for possible
retraction. The simplified actions of the bracket
words are as follows:

word action comment

(n, \ move back to main event start
o, make further events 'stay put’

) m, / restore net duration of main event
n, restore original ',' setting

{CMC 86 Proceedings

n = ',' value of the main event
m = n + total duration inside brackets

Normally, m = n since the length of bracketed events
is 0.

Additional actions (not shown) control voice
selection. .

BROKEN CHORDS

The bipolar duration implementation of chords allows
more advanced chord-like groups to be scored very
simply.

The programmer may explicitly use ',' inside the
brackets to set a non-zero length so that there is a
time interval between bracketed events. This gives
broken (arpeggiated) chords:

normal chords broken chords

48, C(EGB) F(ACE) 48, C(8,EGB) F(8,ACE)

Voice &4 < T O
Voice 3 Ge==e-Commem
Voice 2 of— Y P,
Voice 1 Coeme—Feoeees Comm== Fomeu=

The brackets ensure that the net duration is always
that of the main note. 1If the total length inside
the brackets exceeds that of the main event, then a
net negative duration is needed - the ’'strum’
overlaps the next main event:

48, C{24,EGB) F(24,ACE)

Voice & Be=eeeeEee—e—e
Voice 3 [S o
Voice 2 Eeeee- Y PR

Voice 1 Cee-—- | —

Alternatively, the arpeggiating ',' setting can
itself be negative, so that the strum anticipates
the main event:

48, C(-8,EGB) F(-8,ACE)

Voice 4 B-ew=-E-ee==
Voice 3 G-----C-

Voice 2 Eeem=- Ammmmm
Voice 1 Cmmmmm |

ECHO

Echo simulated on successive voices is very similar
to broken chords from the point of view of time
domain access. The difference is that the events
that are directed to successive voices with
successive time displacement are copies of the main
event, rather than additional scored events. The
word 'Echo' (provided in a special effects
extension) employs AMPLE's music event vector to
generate copies of each event and displace them in
time using / and Q. The interval between echoes
(positive or negative) and the number of echoes can
be specified.

A-34

GATE ARTICULATION

A particularly illustrative application of random
access is simple control over articulation via the
gate signal. Note-separating gaps of fixed length
(non-legato or 'portando'} are achieved by each note
or hit reaching back to prematurely terminate its
predecessor. Staccato style is achieved by the note
or hit reaching forward to terminate itself a fixed
time in the future. '

Both these reaching actions have a zero net change
on the time position, so can simply be added to the
standard interpretation of music events using the
event vector. The articulation actions can
themselves be expressed in terms of simple music
events - rest, hold and back-hold. This is more
obvious when the articulations are thought of as
rests added between notes:

gap (non-legato)

st 'LUVD:;“’J*J"J !
AMPLE 12, X/ / * X/ /* X XX/ /1 1/
staccato

envelope I l l) I | | ‘ ! l
OO N) O W

12, X2/ /1 X/ /XXX 8/ 715110

staff

AMPLE

An interesting observation is that the articulation
action is a simple form of '‘macro' action; one that
expands each music event into a sequence of music
events with derived parameters, normally used for
more advanced compositional processes.

The simplified definition of the ‘gap' action is as
follows:

ACT(% start vector sequence

4, * % add leading rest

ACT % perform default note action
JACT % end vector sequence

Notice that the second line is identical in essence
to the over-hanging pickup score - each separating

8ap can be considered a rest that over-hangs from
the following note.

The staccato action is:

ACT(% start vector sequence

-4, * % add trailing rest

ACT % perform default note action
JACT % end vector sequence

An important point to note here is that it is the
sounding portion of the note that adopts the fixed
length of the rest, and the silent ‘rest' portion is
the variable-length remainder - the interval between
the rest's 'gate off' event and the next note's
‘gate on'. The duration of the rest is negative,

serving to return the time position to the start of
the note.

The music event sequence on the second line of the
definition is not only the most compact
representation (no back-rest is available)} of the
function, but also illustrates the commonality in
structure of the two actions. In practice, both
these actions are performed by a single word 'Len'
(supplied in a special effects extension), which
takes the length setting as a simple, postive or
negative numeric argument. '

Since durations can pass over existing events, there
is nothing to prevent a gap or staccato interval
being longer than the notes themselves. Under these
conditions, each note reaches beyond its immediate
predecessor and successor to modify events further
removed in the time stream. Complicated
interactions of note length and sequence arise,
giving interesting articulation and phrasing
effects. There is clearly much scope for further
experimentation along these lines, for example, the
use of multiple actions controlling a range of
parameters as the basis for musical sequence
generation and transformation in advanced
compositional processes. This is well within the
capabilities of current implementations of the AMPLE
language.

-
-

REFERENCES

Music 5000 User Guide (1986}.
Ltd, Cambridge, Great Britain

Hybrid Technology

A-35 ICMC 86 Proceedings

